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We consider a differential game of guidance - evasion whose solution we are 
required to find in the class of pure position strategies. It is shown that the intro- 

duction into this problem of information discrimination of the opponent essen- 
tially distorts the meaning of the original game problem. It is known n-31 that 

a differential game of guidance-evasion has a saddle point in the class of pure 
position strategies if the right-hand side of the equation describing the system’s 

dynamics satisfies the condition 

max,min, s’f (t. 2, u, u) = min,max, s’f (t, r. u, u) 

where the maximum and minimum are computed over admissible values of u 
and v; s is an arbitrary n-dimensional vector, the prime denotes the transpose. 
However, if the stated condition is violated, then, in general, an equilibrium situ- 

ation does not exist in the class of strategies. Here the game’s outcome depends 
essentially on whether the players have information on the controls realized in the 
system. A typical situation is when the players do not have such information 

available to them ; in this case an interesting problem is that of seeking the posi- 
tional minimax and maximin pure strategies of the players. Below we use the 

results obtained in [5, 6, 91 to construct such strategies in one example of con- 
flicting conrrol. 

1. The physical sense of the problem being investigated is the following. We have 
a material point moving in a horizontal plane. The motion of this point is controlled 
by two players who form controls which are two-dimensional vectors II /tl and c 1 !I. 
The first player chooses the control u [t] , while the vector z’ ItI is chosen by the second 
player, and the realizations of the controls satisfy the constraints 

// I( 111 /j < II. /I I. It1 11 s \ (1.1) 

Here and subsequently 11 J’ 1) d enotes the Euclidean norm of vector .I’. There is some free 
play in the control system. therefore, instead of the control force II‘ [/I =-~ z( I f I - L; 1 /I 

a certain force II’* [ /1 II*, I /1 -~~~ 7I* I/l, is applied to the point where the vectors 
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II* [ 11 and C, It1 differ from the vectors ZL [t] and P [t] by a rotation through certain 
angles t( [t] and /3 [t] ; the random errors a [t] and p [t] can vary within the limits 

I a [tl 1 < al) < i-t i 2, 1 p ItI ( < f3<,-= x / 2 (1.2) 
We assume that the players know the present velocity and the geometric coordinates of 

the point. The first problem to be considered in this paper - the minimax problem - 

is of constructing a strategy for the first player such that for any realizations of the ran- 
dom errors E [t] and fi [t] and of control v [t] , it guarantees that the point can be led 

to an assigned position in the least possible time. The second problem - the maximin 

problem facing the second player - is of determining an evasion strategy, forming a 
control v [t] such that the point does not hit onto the assigned position in a maximal 
time interval ; here we assume that the second player does not know the random errors 

a [r], p [t] , and control u [t] which are realized. 
Let us pose these problems more precisely. Let y = {yt, 

from the geometrical coordinates of the point, z = (zl, ZZ] 

H (y) be the transformation matrix for rotation by an angle 

ys} be the vector made up 

be the point’s velocity, 

Y, i.e. 

Then, the point’s motion can be described by the equations 

si = z, i = H (a) U - H @)v (1.3) 

The game’s initial position {to, zO} is specified here and subsequently x = [u, z} is 

the system’s four-dimensional phase vector. As the game’s payoff we choose the time 

up to when the point y [t] hits onto the origin M = (0, 0). The first player strives to 

minimize the payoff, the second, to maximize it. 
The multivalued functions u = u (t, z) and v = v (t, z), upper-semicontinuous 

relative to inclusion, are called the strategies of the players. Nonempty sets u (t, z), 
V (t, z) are associated with these functions of the position {t, Z} and, the elements u 

and v of these sets satisfy conditions (1.1). The motions of the conflict-controlled sys- 

tem (1.3) are defined just as in [6]. For example, every absolutely continuous vector- 

valued function r ItI = z [t; t,, z,,, Ul, x 1 t,,] =’ z,, , which satisfies the conditions 

y’ It] = 2 [t], z’ [t] E co {H (a) u - H (p) v : 
: u = u (4 x [4), I a ( < a,, I P I < PO, II v II < y> 

for almost all t > to , is called a motion generated by a strategy U = U (t, ST) . 
In the problems being considered the players’ optimal strategies are contained in the 

class of regularly-discontinuous strategies described abwe, therefore, there is no need to 

introduce the more complete class of positional discontinuous strategies p. 21. We note 
also that information discrimination, which is sometimes introduced to overcome diffi- 
culties of solution, would essentially distort the true meaning of the original game prob- 

lems. Indeed, the assumption that the first player knows the realized random error a [t], 
would in fact eliminate the effect of this error on the control system and would lead to 
a false solution to the minimax problem. An analogous circumstance obtains when infor- 

mation discrimination is introduced in the maximin problem. 

2, We consider the solution of the minimax problem. This problem consists in the 

construction of a strategy U, = U, (t, x) which possesses the following property: for 

any motion 5 ItI = 2 [t; to, zo, U,] the condition y It*] = 0 is realized for 
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& < ta + T,,,where T,, is some number (the minimax of the payoff), and, moreover, 
there does not exist a method for forming the control u, using only information on the 

position {t, 5 [tl}, which guaranteed that the point hits on to the origin y = 0 

in a time less than T,. In this problem the random errors a [t], fJ [t] , and the second 

player’s controlv[t], allunknown to the first player and act against him. The method for 

forming these counteracting factors is not stipulated in the statement of the minimax prob- 
lem. By the same token we do not exciude such control methods which use information 

on the controls u [t] realized by the first player. Thus, the statement of the minimax 
problem facing the first player admits of an information discrimination against the first 
player. (It is better to overestimate the opponents capabilities than one’s own). 

We proceed to the construction of strategy U, = U, (t, z), making use of the appro- 
ach proposed in [5, 61; we introduce into consideration a hypothetical minimax mis- 

match a0 (t, z, u), computed for the instant U and for the initial position {t, z}. 
According to relation (3.9) in [6], in the case being considered 

0 

~~ (t, x, a) = maxi [[ :niu,, max,, il, p/’ {X (3, r) f (~1, u, u, p)j, dz + 

+ 1’ {X (3, t)“}m 1 = /IS* (t, X, 5) I/ - ‘/z (3 - t)” (p CO.5 U, - Y) 

s*=(1/1+(j-t)Z,,y,-t-(j-_)Z,) (2.1) 
Here and subsequently 1 is a two-dimensional unit vector, the minimum and maximum 
under the integral sign are computed, respectively, over the parameter set {u: 1) u 11 < pj 
and over the variable set {v, a, p: /I v jj < Y, ( al < a,, 1j3I < p,,}; X (t, T) is 
the 4 x 4 fundamental matrix of the system y’ = z, 2’ = 0; f (u, 27, a, j3) is a four- 
dimensional vector whose first two components are zero,while the second two compose 

the vector H (a)u - 11 (@)v. The subscript m in formula (2.1) equals two and signi- 
fies that we should consider the first two components of the vector occurring within the 
braces. Relation (2.1) is valid in the region [t, 5, Ui where its right-hand side is grea- 

ter than zero, otherwise we set es (t, z, U) = 0. The regular case holds in the region 

E. (t, 2, a) > 0 , i.e. the maximum over L in the right-hand side of expression (2.1) 
is attained on the unique vector I,, (t, x, 5) = s */[IS* 11 and a0 (t, 2, U) is a conti- 

nuously differentiable function of the variables t, LC for a fixed value of U. 
The smallest value of the parameter U= 6, (t,,s,) ‘2 t, for which the function &a (t, 

5, U) vanishes, is called the program absorption instant in minimax. The quantities 

ea (t, 5, U), I0 (t, 2, U), 6, (t,), x,,) , introduced above, are the fundamental elements 
of the extremal construction defined at each position {t, X} the values of the function 
u,, = u, (t, z) , namely the extremal strategy which is prescribed by the following 
rule : 

(2.2) 

It can be verified (for example, see the analogous case in [5, 61) that the quantity 

a0 It] = e,, (t. J I/], 6, (t,, ~a )) d oes not increase along the motions x [t] = z [t; 
to, G,, u,,] generated by strategy U, (t, CE) ; further, from the definition of the instant 
eo(t,,, J.,)) we have the equality a0 [t,] - 0, consequently, E&8., (to, x,)1 = 0. 
From formula (2.1) we now obtain the equality a0 [ fj,] j/ y [6,] jj =- 0. Thus, the 
extremal strategy U,, = U,. (t, X) guarantees the first player the hitting of the point 
y Lt] onto the position 111 {O, 0) at the instant 6s. We now show that this result is 
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the best one for the first player, i.e. strategy 0, is the optimal minimax strategy. 
We make use of the following fact to verify this statement. Let T, be the time of 

optimum response in the problem of taking the system 

LJ’ = Z, z’ = LO (11 w 11 < p cos a0 - v) (2.3) 

from an initial state {to, x0) to the position y = 0. It turns out that the equality 

T, = 6” (&I, %) - to (8.4) 

is valid. This fact follows from expression (2.1) and from the corresponding solvability 

conditions for the time-optimal problem p, 81. 
Now suppose that the first player chooses any positional method of forming a control 

u [t]; then, setting v [t] mu u [t] (v/p), fi [t] =O, and letting the random error a [t] be equal 

to + a,, -a0 with probability l/.’ we get that the mean value of the norm of the vec- 

tor H (a [t]) u ]t] - H (/!I [t]) u [t] does not exceed the magnitude ~1 cos a, - Y, con- 
sequently n, 81, contact cannot occur in less than the time of optimum response I’,, 

i.e. the estimate To < T, is valid for the minimax of the payoff. On the other hand, 

it was established above that the strategy U, of (2.2) ensures the hit in time To = 6, 

(to? X0) - to = I’,. Thus, U, = o’, (t, CT) is indeed the pure minimax strategy of the 

first player. 
The class {U) of generalized strategies, which contains the solution U, = Lr, given 

in (2.2) of the minimax guidance problem, was introduced for the formal description of 
the discontinuous control methods. Let us now clarify the significance of the result ob- 
tained in the light of the general substative interpretation given in [3, 51. We consider 
the following approximation scheme for forming the first player’s piecewise-constant 

controls I(~ [t] (t > to): UA [t] = UA ITi] E us (ti, dA) WJ)? t E Iti, ‘i+l) 

ri+1= zi+A’ i =O, 1,. . ., To = $7 A>0 

Here z@) [t] is the mo i t on of system (1.3) generated by control ZL~ [t] and by certain 

realizations a [t], fi it], u It]. The following assertion is valid: for any arbitrarily small 

neighborhood S, of origin M = (0, 0) we can find A0 > 0 :uch that for all A < A, 

and for any realizations v [t], a [tl. /3 [t] the approximate control Us [t] ensures that the 
point {y’p) [t], y’,a)[t]} falls into the neighborhood S, in time To, On the other hand, 

for any T < To there exists a neighborhood of the origin, S, (T) , such that with a pro- 

bability arbitrarily close to unity the point {yy ’ It], yz ta) [t]} will evade falling into 
S, (T) on the interval [to, to + T] for A sufficiently small. The motion of the point 

fYtA’ [tl, Yz @) [t]) is generated by the controls 6 [t] s 0, u [t] = (v/p) u[t] (where u [t] 
is \he realization of an arbitrary positional control method of the first player), a, ItI = 

aA 1~~1 (t E [zi, T~+~)) is a piecewise-constant function whose values are randomly set 

equal to -l-a0 and -a, with probability l/z . It is assumed that the choice of random 

error aA [t] is probabilistically independent of the choice of the control u ltl. 
Finally, we note the following fact. In the absence of random errors a and 6 the opti- 

mal payoff in the guidance problem for system (1.3) yields a quantity less than To; this 
quantity equals To exactly if the first constraint in (1.1) is replaced by the condition 

II u II d p cos ao. In other words, the appearance of the random error a has the same 
effect as does the lessening of that maximal force with which the first player acts on 

the material point being considered. 

3. We now consider the maximin problem. The optimal result in the maximin 
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problem is the quantity To possessing the following property. Whatever strategy V cho- 

sen by the second player, it cannot guarantee the fulfillment of the condition y [t] -;- 0 
for to < t & T” (T* > To) for all motions LI’ If1 = :r [I; f,, to, Jy]. (XI the other 

hand, strategies 1” 6 exist for which all motions LC [t] = J 1 I; to, J(,~ 17&l satisfy the con-- 

dition !/ [f] # 0 for to < f < T’ - 6, here 6 > 0 is arbitrarily small. Thus, ‘/‘I’ 

is the maximin of the game’s payoff (more precisely, the sup ini of the payoff) in the 

class of pure strategies. In this paper we describe the construction of a strategy 1-s =- 

V, (t, J) which supplies the second player with a result as close to optimal as desired. 

We emphasize once again that the strategies I’ 5 = Jis (f. J) form the second player’s 

control u [r] without using information of the random error realizations c1 1 /I. /fi [t]. 
We have noted above that the access to such information to the second player essentially 

distorts the meaning of the original game problem. Furthermore. rhe statenlent of the 

maximin evasion problem admits of an information discrimination against that player 

in whose interests this problem is being solved (i.e. the second player). 

To construct the strategy vs = vs (f, 2,) we make use of the approach suggested 

in [9]. We introduce the concept of a hypothetical maximin mismatch F” (t. .I’. Z) [S, 

61. Suppose that at instant ! system (1.3) is found to be in state .I’ 1 /I T-- .r. We spe- 

cify some measurable function /I [rl (/ ( T ( 5, /1 I’ 1 T] // .< 1,) and we consider the 

attainability region (; (t, .x, a; I‘ / . II, namely, the set of those points ~1 onto which the 

controlled point can hit from the initial position ;I, ~1 at the instant 0 when the second 

player chooses the stated control I: IT]. f < T iI (J. and for all possible summable 

realizations 

77 IT], CY. [Tl. p [Tl (i,( T ,c 2. 1177 ITI !<!I, /M ///I <a-L,,. / fJ f/I I<‘%,). 

This set is convex, closed and bounded. Let t’ (/, J, 5; 7‘ [ .I) be the distance from 

point d/ l- (0. 0; to set (;(/,.l,, ;: I.[.]). We now define the hypothetical rnaximin 

mismatch ~0 (t, ~1’, 5) as the maximal value of the quantity F (I. I. ;; 1’ [ -]j. consi- 

dered for fixed values of 1. J, ; vn the set of all program controls (’ 111 (I 5; T < z; 
jju [tl /I < v) of the second player. In the example given this definition leads to the 

following relation for computing F” (t. r(‘. a): 

t.” (t. .I. 5) = IllitXi.l 1 I-‘ (/, .I', 5: I' ( J) = Illitll' 7 IllikX, llIill,f ,,:,I' : (::.l) 

i 

= /l.c.+ (I. .I 1 z) 11 - I,‘.! (; - I)? (II - \‘(?).i: $,) 

All the quantities occurring in formula (3.1) have the same meaning as in formula (2.1), 
111 - 2. 

The hypothetical maximin mismatch &’ (2, L, 0) is completely defined by relation 

(3.1) in that region of the {f, X, a} -space wherein the right-hand side of (3.1) is 

greater than zero ; in the remaining part of the space we set E”(t, X, a) -- (1. In the 

region + ( i. .I . ;) > (1 the function PO (t. J. CJ) is continuously differentiable in f. .I’ 

for fixed o and the maximum over 1( (/ 1 i/ = 1) in the right-hand side of (3.1) is achi- 

eved 011 Llte unique vector I,, (1. 2. 2) = .q* 41 sl:)\. i.e. the so-called regular case takes 

place. The smallest roots of the equation’ t.” t.1, .I’. 0) = cl. considered for a fixed ini- 

tial pk)sition :t, SC,\, is called the instant ii” (,t, X) of rnaxirrlin program absorption. 

It tluns out that the payoff’s maximin / ’ ‘U in the game being considered equals I?” - I,, 
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where 6’ = I?~ (ts, ~a). 
To prove this fact we first show that none of the second player’s strategies V = V (t, z) 

guarantees that system (1.3) will evade falling into the point M = {0, 0) on the inter- 

val [t,, fro], i.e. To < 6O - to. We introduce into consideration the auxiliary time- 

optimal problem for system (2.3) from the initial position {to, x0} to the state Y = 0, 
but now under the following constraints on the control resource, I/ w 11 f p - Y cos PO. 

From equality (3.1) and from the conditions for the solvability of the time-optimal prob- 
lem it follows that the time of optimum response T* equals 60 - to in this case. Let us 

now examine the original evasion game on the interval [to, SO] and suppose that the 

second player has selected some positional method for forming the control v ]t]. We con- 
sider the following method for forming the control U, the random errors u and 6: u [tl s 0, 
the random error p [t] is chosen equal to +Po or -PO with probability i/z , so that at 

each instant t > t, there is realized in sjrstem (1.3) a certain averaged value of the 

second player’s control L’* ]t],not exceeding v cos fiO in absolute value. Besides this force 
u* [t] , let there act on the material point being considered a force u [t] = o* ]t] + 

UP It]. where KO [t] is the solution of the auxiliary time-optimal problem. We note that 
the statement of the maximin problem does not exclude the possibility of the partner 

realizing such a control. 

Thus, the force II (a)u - II #)I: acting on the point proves to be exactly equal to the 
vector I? [I]. consequently, the motion of system (1.3), generated by these realizations, 
hits onto point N = (0. 0) at the instant t = to + T* = 6O. Therefore, none of the 
second player’s strategies I’ guarantees that the point (yr [t], y2 [t]} will evade falling 

into the state 11 = (O.O} upto the instant fkO=t, + T*, i.e. indeed T” < T+ = 6” - t,. 

On the other hand, we shall construct below a strategy Ia which ensures, for all motions 

z IfI = 32 [C t,,, To, I*,] the fulfillment of the condition yit] # 0 for to < t < e” - 6 
(b > 0 is arbitrarily small). Consequently, the payoff’s maximin To indeed does coin- 
cide with the quantity 6O - I,. 

We begin the construction of the strategy vs = vs (t, 2). As in the case of linear 
systems with separable controls [9], we introduce the auxiliary function 

Lb (t, m) = “c”idJ (t, %, s)]_‘ds, 43.6 = 60 - 6 (3.2) 

‘1 
The function J-6 (t, X) is defined in that part of the {t, X}-space wherein 8’ (t, J’, 
5) > 0 for t < 5 < fk8. Conversely, from the relation -!& (t, Z) < CQ we can deduce 

that the function es (t, r, 5) does not vanish for any 5 E I,$,, fib] (otherwise the impro- 

per integral on the right-hand side of (3.2) would diverge). In particular, ~0 (t, Z, t) = 

Ii y [t] II,\ 11 follows from the property LS (t, x) < ‘*: . Thus, it is sufficient to construct 
tne second player’s desired strategy 1-s such that along any motion x [t]=~ [t; tOrzO,]‘s], 

the function Ls(t, x) remains bounded for all tE[tO,&]. Having noted that Ls (to, 
x0) < 00 (since t;O (t, :I‘. cr) > 0 for to < 5 < (is = 00 - 6). we construct the 
strategy Vs = V8 (1, Z) so as to ensure the fulfillment of the relation 

J-s (t, 5 ItI) < Ls (to, :ro) (3.3) 

We compute the total time derivative of function 1,s (I, X) relative to the equations of 

motion (1.3) 
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4% 
aL 

- = cl-l (t, I%, 77, v, a, p) = - 11 y 11-l - j [EO (t, 5, q1-2 (3 - t) (p - 2‘cos 90) d5- 
at 

- (H(a) u - H (p) 0)’ 7 [E” (t, 5, “)I-2 (5 - t) 1, (4 2, 5) ds 

We now compute the quantity (IF (t, 5) 

ajo (t, X) = min, max,,,,: 8) (t, Z, U, U, a, P) 

We obtain the following relation: 

U” (t, z) = maxU, il, ,Y cl,(t, J’, U, UO(t, LX), CL, 3) = (3.4) 
% 

= - Ii y j/--L - (11 - v cos p(J (lip (t, x) j/ - 1 (5 - t) [E” (t, .L’, 5)]-2 ds) < 0, 

‘96 

P (4 2) = c i&O (t, 32, q1-2 (5 - t) I, (t, 5, 5) as 
I 

u” (4 xc) = - VP (4 z) i II P (4 4 II 
We now define the strategy Vs in the following manner : 

vs = u” (t, 4 l.3.5) 

Just as in [9], by using relation (3.4) we can show that strategy vs ensures the fulfillment 
of inequality (3.3) and, consequently, guarantees the fulfillment of the relation y[ t] # 0 

for to < t < 6s = 6O - 6. We note that the strategy v, constructed in (3.5) is a 
continuous vector-valued function of the game’s position in its domain of definition. 

The significance of the probabilistic mechanism brought in to prove the optimality 
of the result for To, can be clarified once again by the general interpretation given in 

[3]. Suppose that the random error /3 is formed at discrete instants t = ‘i (xi = f,, -I- 
iA, A > 0) and takes value -t_ b. or -PO with probability 1/2. Next we set b It] = 

13 IZi] for t E [Ti, Zi+l); a [tl 5 0, u [t] 1 IP [t] -I r It], where the choice of the values 
of the random error fi [t], realized in system (1.3) at a given instant, is probabilistically 
independent of the choice of the control u It]. With probability arbitrarily close to unity 

the motions generated by these realizations fall into an arbitrarily small neighborhood 

of the point M = (0, 0) not later than the instant 60 when the subdivision A > 0 is cho- 
sen sufficiently fine. 

In conclusion, we note that the payoff’s minimax To coincides with the value of the 

differential game described by the equation 
y’ z, z’ -- 1c - v (3.6) 

under the constraints on the controls // u 11 < p cos a, and 11 VII < Y. The payoff’s 
maximin To is the value of the differential game described by system (3.6) under the 
constraints on the controls /I u /) < p and 11 L’ 11 < v cos PO. Thus, the presence of ran- 
dom error leads to the same result as does the lessening of the resources of the player 
from whose point of view the game problem is being investigated. 

In proving the optimality of the pure strategies U, and V, constructed above, we con- 
sidered the mixed strategies of the opponent, namely, in the minimax problem we intro- 
duced a mixed control by the random error u, while in the maximin problem, a mixed 
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control by the random error p. These notions were brought in for auxiliary arguments. 
However, if we pose the problem of seeking the optimal mixed strategies in a differen- 
tial game corresponding to Esq. (l-3), where the parameters u and b are subject to the 
first player, while u and a. to the second player, then we can show that this pursuit - 

evasion game has a value T, in the class of mixed strategies. The quantity Tc coincides 

with the value of the differential game described by Eqs. (3.6) under the constraints 

11 u [I,( p cos a0 and 11 v /) < Y cos so. The problem statements and the construction 

of the optimal strategies, presented in this paper, can be carried over to the case when 

instead of system (1.3) we consider a check model system DO] in which, however, ran- 

dom errors of the “free-play” type also are imposed on the players’ controls. 
The author thanks N.N.Krasovskii for posing the problem and for valuable advice. 
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